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Abstract: We consider a generalized Randall Sundrum (RS) brane world scenario with a

cosmological constant Ω induced on the visible brane. We show that for Ω < 0, resolution of

the hierarchy problem requires an upper bound on the magnitude of Ω. The corresponding

tension on the visible brane can be positive or negative. On the other hand, there is no

such bound for Ω > 0. However, in this case, the resolution of the hierarchy problem along

with the tuning of the value of the cosmological constant to its observed value closed to

+10−124 (in Planck units) naturally lead to the tuning of the modulus to a small value of

inverse Planck length as estimated in the original RS scenario.
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Some of the intriguing questions about our physical universe, which remain unan-

swered, are:

(i) Why does it appear to have (3 + 1) space-time dimensions? Are there additional

unobserved dimensions?

(ii) Why is the ratio of the electroweak scale/Higgs mass (m) to the Planck mass (m0)

so tiny (≃ 10−16)? This gives rise to the gauge hierarchy problem.

(iii) Why is the observed value of the cosmological constant Ω extremely small (Ω ≃
10−124) (in Planck units)? This gives rise to the cosmological fine tuning problem.

In the so-called brane world models proposed during the last decade [1 – 3], it was

shown that questions (i) and (ii) may be related, in the sense that if one assumes that the

space-time dimension exceeds four, the hierarchy problem can be solved. A lot of work has

also been done recently in an attempt to relate the questions (i) and (iii) by adopting various

approaches such as the domain wall scenarios [4, 5] and self tuning mechanism in large extra

dimensions [6 – 8]. While the RS two-brane model is particularly successful in resolving

the fine tuning problem without bringing in any arbitrary intermediate scale between the

Planck and the Tev scale, it has a somewhat unsatisfactory but inevitable feature of having

a negative tension visible brane to describe our Universe. It has been shown that such

negative tension branes are intrinsically unstable. Furthermore the effective visible 3-

brane being flat has zero cosmological constant which is not consistent with its presently

observed small value. In this article we extend such warped geometric model to include a

non-zero cosmological constant and look for a possible positive tension Tev brane when a

large hierarchy exists between the two branes. A motivation to look for positive tension

branes lies in string inspired brane world scenarios, in which the relevant D-branes have

positive tension.

Here by generalizing the RS model to include a non-vanishing cosmological constant

on the visible brane, we show that questions (i), (ii) and (iii), as well as the issue of

brane tensions are intimately related. We demonstrate that while the regime of positive

cosmological constant on the visible 3-brane (de-Sitter) strictly implies a negative brane

tension, that with negative cosmological constant (anti de-Sitter) admits of both positive

and negative tensions of the visible brane. For both the regions, the desired warping from

Planck to Tev scale can be achieved as a proper resolution of the gauge hierarchy problem.

However larger is the magnitude of the 4d cosmological constant ( + ve or - ve) further away

is the value of the modulus from the Planck length leading to a new hierarchy of scales.

This obviously brings back the fine tuning problem in a new guise and is undesirable.

In the RS scenario, it was proposed that our universe is five dimensional, described by

the metric [1]:

ds2 = e−2kryηµνdxµdxν + r2dy2 (1)

where Greek indices µ, ν, . . . run over 0, 1, 2, 3 and refer to the 4 observed dimensions, y

signifies the coordinate on the additional spacelike dimension of length r, Λ is the bulk

cosmological constant, k ≡
√

−Λ/12M3 ≈ Planck mass. The factor e−2kry is known as the
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warp factor. The geometry of the extra dimension is orbifolded by S1/Z2. The constant

y slices at y = 0 and y = rπ are known as the hidden and visible branes, the observable

universe being identified with the latter which has a negative brane tension as opposed

to the hidden brane which has a positive brane tension. It can be shown that even if the

Higgs (or any other) mass parameter in the five-dimensional Lagrangian is of the order of

Planck scale m0 (≈ 1016 TeV ), on the visible four dimensional brane, it gets ‘warped’ by

a factor of the form:

m = m0e
−2krπ . (2)

For, kr ≃ 11.84, one gets m ≈ 1TeV . Thus, in this picture, the origin of a small Higgs

mass lies in the warped geometry of five dimensional spacetime.

In [1], it was also shown that the cosmological constant induced on the visible brane

is zero. In this paper we demonstrate that the last condition can be relaxed for a more

general warp factor, such that the metric is given by:

ds2 = e−2A(y)gµνdxµdxν + r2dy2 . (3)

For the above metric the visible brane can have a negative or a positive cosmological con-

stant. Defining e−A(krπ) = m/m0 = 10−n and the magnitude of the induced cosmological

constant = 10−N (in Planck units), we show that for negative cosmological constant N

cannot be less than a minimum value given by Nmin = 2n. This implies a very small upper

bound of the magnitude of the cosmological constant. Although for positive value of Ω

no such bound exists in general, the need for resolution of the hierarchy problem without

introducing a new scale in the theory ( i.e keeping the value of the modulus close to Planck

length ) , restricts the cosmological constant to be very very small. The corresponding brane

tension for both Tev and the Planck branes are determined for these two different scenarios.

We start with the metric (3) and evaluate the function A(y) which extremises the

action:

S =

∫

d5x
√
−G(M3R− Λ) +

∫

d4x
√
−giVi (4)

where Λ is the bulk cosmological constant, R is the bulk (5-dimensional) Ricci scalar and

Vi is the tension of the ith brane (i = hid(vis) for the hidden (visible) brane). Note that

gµν is the four dimensional metric.

The resulting Einstein equations are:

4Gµν − gµνe−2A
[

−6A′2 + 3A′′
]

= − Λ

2M3
gµνe−2A (5)

−1

2
e2A 4R + 6A′2 = − Λ

2M3
(6)

with the boundary conditions
[

A′(y)
]

i
=

ǫi

12M3
Vi , (7)

where ǫhid = −ǫvis = 1. In the above, 4Gµν and 4R are the four dimensional Einstein tensor

and Ricci scalar respectively, defined with respect to gµν . Dividing both sides of eq. (5)

by gµν , for any µ, ν, and rearranging terms, it is seen that one side contains A(y) and its
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derivatives, depending on the extra coordinate y alone, while the other side depends on

the brane coordinates xµ alone [5, 9]. Thus each side is equal to an arbitrary constant, Ω

say. Thus, we get from eq. (6):1

4Gµν = −Ωgµν , (8)

e−2A

[

−6A′2 + 3A′′ − Λ

2M3

]

= −Ω . (9)

Computing 4R from eq. (8), and substituting in eq. (6), A′ can be evaluated, which on

further substitution in eq. (9), yields a simplified expression for A′′:

6A′2 = − Λ

2M3
+ 2Ωe2A (10)

3A′′ = Ωe2A . (11)

The above corresponds to a constant curvature brane spacetime, as opposed to a Ricci

flat spacetime, which is normally assumed. For example, for Ω > 0 and Ω < 0, gµν may

correspond to dS-Schwarzschild and AdS-Schwarzschild spacetimes respectively.

For Ads bulk i.e. Λ < 0, we first consider the regime for which the induced cosmological

constant Ω on the visible brane is negative. Defining the parameter ω2 ≡ −Ω/3k2 ≥ 0, we

get the following solution for the warp factor, satisfying eqs. (10- 11):

e−A = ω cosh
(

ln
ω

c 1
+ ky

)

(12)

Note that the RS solution A = ky is recovered in the limit ω → 0. From this and eq. (7),

the brane tensions follow:

Vvis = 12M3k





ω2

c2
1

e2krπ − 1

ω2

c2
1

e2krπ + 1



 ; Vhid = 12M3k





1 − ω2

c2
1

1 + ω2

c2
1



 (13)

Normalizing the warp factor to unity at the orbifold fixed point y = 0, we get:

c1 = 1 +
√

1 − ω2 . (14)

(The other solution c1 = 1 −
√

1 − ω2, for which the RS result is not recovered in the

ω2 → 0 limit, is excluded from further discussions).

Next, to solve the hierarchy problem, we equate the warp factor at y = rπ to the ratio

of the Higgs to the Planck mass:

e−A = ω cosh

(

ln
ω

c1
+ krπ

)

= 10−n . (15)

At this point, we keep n arbitrary, although eventually we will assume it to be ≃ 16.

Defining krπ ≡ x, the above equation simplifies to:

10−n =
1

2

[

c1e
−x +

ω2

c1
ex

]

, (16)

1Our eq. (8) is equivalent to eq. (17) of T. Shiromizu, K. Maeda, M. Sasaki, Phys. Rev. D62 (2000)

024012, in the absence of matter on the brane.
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from which one gets:

e−x =
10−n

2

[

1 ±
√

1 − ω2102n
]

. (17)

Clearly, real solutions for e−x exists if and only if ω2 ≤ 10−2n. In other words, solution of

the hierarchy problem requires the magnitude of the induced cosmological constant on the

brane to be extremely small! Thus from eq. (14), c1 ≃ 2, which we will assume from now

on. Further setting the brane cosmological constant ω2 ≡ 10−N , we get the upper bound

on the cosmological constant:

Nmin = 2n . (18)

Thus, for n = 16, it follows that the brane cosmological constant cannot exceed 10−32 (in

Planck units).

Also eqs. (16) and (17) simplify to:

10−N = 4
(

10−ne−x − e−2x
)

, (19)

e−x =
10−n

2

[

1 ±
√

1 − 10−(N−2n)
]

. (20)

From eq. (20) above, it can be seen that for N → ∞ (ω2 → 0), the RS value of x = n ln 10

is recovered (the other solution in this limit, x = ∞, is excluded). For N = Nmin, we get

a degenerate solution x = n ln 10 + ln 2. However, for N < Nmin, there are two values of

x which give rise to the required warping, instead of one, as was in the case of RS.2 For

N − 2n ≫ 1, these two solutions are:

x1 ≃ n ln 10 +
1

4
10−(N−2n) , x2 ≃ (N − n) ln 10 + ln 4 . (21)

The first corresponds to the RS value plus a minute correction, while the second,

although of a similar order of magnitude (thus ensuring that no new scale is introduced),

is quite distinct. The hierarchy problem is solved for two small and negative values of the

cosmological constant. Note that x2 > x1.

In figures (1) and (2), we have plotted N versus x, using eq. (19), we have plotted −N

versus x (for n = 16). In figure (1), point A corresponds to the RS values of (x,N) =

(n ln 10,∞). Point B corresponds to the maximum value of ω2, i.e. (x,N) = (n ln 10 +

ln 2, 2n), beyond which ω2 starts to decrease once again. Far from the maximum, N is

given approximately by the linear relation:

N = (ln 10)−1 [−x − n − ln 4] , (22)

which we have plotted in figure (2).

From eqs. (13) and (20), we obtain the tension on the visible brane for the two solutions

as:

Vvis = (12M3k)
1 − 10N−2n

[

1 ±
√

1 − 10−(N−2n)
]

1 + 10N−2n
[

1 ±
√

1 − 10−(N−2n)
] . (23)

2We thank A. Sen for pointing this out to us.
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Figure 1: Graph of N versus x = 36 − 40, for n = 16 and for both positive and negative brane

cosmological constant. The curve in region-I corresponds to positive cosmological constant on the

brane, whereas the curve in regions-II & III represents negative cosmological constant on the brane.
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Figure 2: (Continuation of of graph in figure 1) Graph of N versus x = 240− 250, for n = 16 and

negative brane cosmological constant

Observe that Vvis = 0 when N = Nmin = 2n. Further, it is easy to show that Vvis < 0

for x = x1, while Vvis > 0 for x = x2. Thus the second solution for x is associated with a

positive tension brane, which also produces the desired large hierarchy. When N −2n ≫ 1,

the two tensions are approximately given as:

Vvis−1 ≃ −
(

12M3k
)

(24)

Vvis−2 ≃ 1

3

(

12M3k
)

. (25)

From (25), we see that a small negative cosmological constant suffices to render the tension

positive, provided the distance between the branes is somewhat larger than the value
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predicted by RS. From (13), the tension on the hidden brane on the other hand, is given by:

Vhid =
(

12M3k
) 4 − 10−N

4 + 10−N
, (26)

which is always positive.

Next, for Ω > 0, the warp factor which satisfies eqs. (10- 11) is given by:

e−A = ω sinh
(

ln
c2

ω
− ky

)

, (27)

where now ω2 ≡ Ω/3k2, and as before, normalization of the warp factor on the hidden

brane gives c2 = 1 +
√

1 + ω2 .

Equating the above to m/m0 = 10−n, we get:

10−n =
1

2

[

c2e
−x − ω2

c2
ex

]

, (28)

and the counterpart of eq. (17) is now,

e−x =
10−n

c2

[

1 +
√

1 + ω2102n
]

. (29)

From eq. (29) one can see that in this case, there are no bounds on ω2, and the (positive)

cosmological constant can be of arbitrary magnitude. Also, there is a single solution of x,

whose value depends on ω2 and n. This is described in the region I in FIG.1, from where it

can be seen that a small and positive value of the cosmological constant, say the observed

value ∼ 10−124 (in Planckian units), corresponds to x and hence krπ very close to the RS

value 36.84 and the value of the cosmological constant rises sharply with small departure

from the RS value of krπ. This explains why the observed small value of cosmological

constant naturally leads to the tuning of the value of the modulus r to be inverse of Planck

length when the value of k is of the order of Planck mass. However in this regime, the

Tev brane tension continues to be negative as in the RS case. This can be seen from the

expressions for the brane tensions which in this case are:

Vvis = 12M3k





ω2

c2
2

e2krπ + 1

ω2

c2
2

e2krπ − 1



 ; Vhid = 12M3k





1 + ω2

c2
2

1 − ω2

c2
2



 (30)

As c2 > ω, Vhid is always positive. On the other hand from eq. (30), the condition of

positivity of the warp factor 10−n requires ω2

c2
2

e2krπ < 1. This implies Vvis is negative for

the entire range of positive values of Ω.

In summary, we have derived the exact form for the warp factor in a generalized RS

braneworld scenario, which admits of both positive or negative cosmological constant on

the visible 3-brane. We have shown that the induced negative cosmological constant on

the 3-brane is bounded from below by ∼ −10−32 (in Planck units). Furthermore for a

tiny value of cosmological constant, the hierarchy problem can be resolved for two different

values of the modulus, one of which corresponds to a positive tension Tev brane along with
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the positive tension Planck brane. It would be interesting to study implications of these

results. In the other regime namely Ω > 0 the Tev brane tension turns out necessarily to be

negative. The value of the modulus corresponding to the observed value of the cosmological

constant lies very close to the RS value and rises very rapidly as we depart from the value

of kr predicted in the original RS model. Tuning of the small cosmological constant thus

implies the tuning of the value of the modulus r at the inverse of Planck length. It may

be noted that a modulus value much away from Planck length ( corresponding to a large

cosmological constant ) will give rise to a new hierarchy of scales leading to a possible large

radiative correction to the modulus and in turn bringing back the fine tuning problem again.

Our results thus indicate that if one wants to resolve the fine tuning problem in connection

with the Higgs mass, without bringing in any hierarchy through the size of the modulus,

the value of the cosmological constant Ω (whether positive or negative) on the Tev brane

must be very small! In other words the resolution of the gauge hierarchy problem, and

the cosmological fine tuning problem are related and one implies the other if the modulus

value is kept close to Planck length to avoid any further scale hierarchy. It will now be

interesting to study whether for this generalised RS model the modulus can be stabilized

to a value close to Planck length following the mechanism proposed by Goldberger and

Wise [10] and what are the other phenomenological/cosmological implications of such a

generalised warp factor and brane tensions. We hope to report these in future works.

We thank A. Dasgupta, A. Sen and S. Sur for useful discussions. SD thanks the Department

of Theoretical Physics, Indian Association for the Cultivation of Science, Kolkata, for

hospitality, where this work was done. This work is supported by the Natural Sciences and

Engineering Research Council of Canada.
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